Problem Sheet II

Physical Cosmology
Part III Mathematical Tripos
Jochen Weller & Matteo Viel
Institute of Astronomy

[1] Using the relation between apparent magnitude m, absolute magnitude M and the luminosity distance $d_{\rm L}$:

$$m-M = 5\log\left(\frac{d_{\rm L}}{10~{\rm pc}}\right)\,,$$

estimate the luminosity distance $d_{\rm L}$ to which the following objects could be seen if m=20: (i) a star like sun (M=4.72); (ii) a globular cluster; (iii) a bright galaxy.

[2] Derive the Hubble parameter $H(z) = \dot{a}/a$ for a universe with an equation of state $p = w\rho$, where w is a constant.

Using H(z), derive the luminosity distance, the angular distance, the volume element and the age of the Universe in this case.

[3] (a) Reconstruction of the potential of dark energy

Assume a flat universe, where the coordinate distance is given by $r(z) = \int_0^z dx/H(x)$, and H is the Hubble parameter. Derive an expression for H^2 in terms of dr/dz, and \ddot{a}/a in terms of dr/dz and d^2r/dz^2 .

Assume that the dark energy is given by a scalar field rolling down a potential $V(\phi)$, and that the energy density and pressure of a scalar field are given by

$$\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + V(\phi)$$

and

$$p_{\phi} = \frac{1}{2}\dot{\phi}^2 - V(\phi).$$

Use the Friedmann equations with a scalar field dark energy and matter component (with present-epoch $\Omega_{m,0}$) to show that the following parametric solution exists:

$$V[\phi(z)] = \frac{1}{8\pi G} \left[\frac{3}{(dr/dz)^2} + (1+z) \frac{d^2r/dz^2}{(dr/dz)^3} \right] - \frac{3\Omega_{\rm m,0} H_0^2 (1+z)^3}{16\pi G}$$
(1)

$$\frac{d\phi}{dz} = \mp \frac{dr/dz}{1+z} \left[-\frac{1}{4\pi G} \frac{(1+z)d^2r/dz^2}{(dr/dz)^3} - \frac{3\Omega_{\text{m},0}H_0^2(1+z)^3}{8\pi G} \right]^{1/2} . (2)$$

Discuss reasons why it might be tricky to apply these equations to observations.

(b) Reconstruction of the equation of state parameter

Assume that the dark energy component is characterized by the equation of state parameter $w(z) = p_{\rm de}/\rho_{\rm de}$ and the present-epoch density parameter $\Omega_{\rm de,0}$. Show that

$$\rho_{\rm de}(z) = \frac{3H_0^2}{8\pi G} \Omega_{\rm de,0} \exp\left[3 \int_0^z \left[1 + w(z)\right] d\ln(1+z)\right] .$$

Show that:

$$1 + w(z) = \frac{1+z}{3} \frac{3H_0^2 \Omega_{\mathrm{m},0} (1+z)^2 + 2(d^2r/dz^2)/(dr/dz)^3}{H_0^2 \Omega_{\mathrm{m},0} (1+z)^3 - (dr/dz)^{-3}}.$$

Discuss qualitatively what astrophysical quantities and observations could be used for the reconstruction.